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CAT MOUNTAIN: A METEORITIC SAMPLE OF AN IMPACT-MELTED

CHONDRITIC ASTEROID -- David A. Kring, Lunar and Planetary Laboratory, University
of Arizona, Tucson, AZ 85721 USA.

Although impact cratering and collisional disruption are the dominant geologic processes
affecting asteroids, samples of impact melt breccias comprise < 1% of ordinary chondritic material

and none exist among enstatite and carbonaceous chondrite groups [1]. Because the average
collisional velocity among asteroids is sufficiently large to produce impact melts [e.g., 2], this

paucity of impact-melted material is generally believed to be a sampling bias, making it difficult to

determine the evolutionary history of chondritic bodies and how impact processes may have

affected the physical properties of asteroids (e.g., their structural integrity and reflectance spectra).
To help address these and related issues, the first petrographic description of a new chondritic

impact melt breccia sample, tentatively named Cat Mountain, is presented below.

Cat Mountain is a 2.7 kg stone containing large dark gray elliptical chondrule-bearing
clasts in a medium dark gray vesicular matrix, with silver metal scattered throughout both areas

(Fig. 1). In sawn surfaces (120 cm2), these phases represent 49% of the stone each, while the

remaining 2% consists of smaller vesicular and dark clasts. The larger clasts, ranging in size from

0.8 to at least 7.4 cm, are shocked and partially melted L5 material. They contain barred olivine

and radial pyroxene chondrules and ghosts of porphyritic chondrules. Olivine (Fo75) and
pyroxene (WolEn77Fs21) are equilibrated and accompanied by lesser amounts of augite

(Wo44En47Fss) , chromite (Mg/(Mg+Fe) = 0.16, Cr/(Cr+Al) = 0.86), apatite, whitlockite,

martensite, kamacite (0.86 wt.% Co), and troilite. Feldspathic material associated with olivine and

pyroxene is either turbid or birefringent and contains spindly to radiating feldspar.

These clasts are crosscut by isotropic polycrystalline dikes of micron-sized silicate phases

which are thoroughly mixed with similarly-sized opaque phases (Fig. 2). These dikes often

surround unmelted islands or rafts of birefringent (but sometimes recrystallized) olivine and

pyroxene. Melt pockets are common at the junctions of multiple dikes. Opaque metal-sulfide

veins also crosscut the clasts and sometimes occur along the margins of silicate-rich dikes. While

most opaque veins are devoid of silicates, one of them contains small pockets of quenched

feldspar laths and skeletal pyroxene crystals. Olivine grains adjacent to the dikes and veins have

been variously deformed; they have undulatory extinction, irregular fractures, multiple planar
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Fi$ 1. Sawn face of Cat Mountain which consists of elliptical

L5 clasts in an igneous-te:_ured matrix. The white specks in

both the clasts and the melt matrix are Fe, Ni-metal alloy_ The

width of the stone is - 11 cnt

Fi_ 2 Trananitted-light image of a clast in thin-section. Dark

po6_'tystalline dikes and opaque veins crosscut a large portion

of the clast The width of this slice of the clast is 1.8 crtt



824 LPSC XXIV

CHONDRITIC IMPACT MELT BRECCIA: Kring D.A.

fractures, Fe,Ni-metal and sulfide fillings in fractures, and some have been recrystallized. Other

deformation features include fractured pyroxene and disrupted chromite, both of which also have

Fe,Ni-metal and sulfide fillings.

In contrast to the partially-melted shock-metamorphosed clasts, the matrix is a total melt

with a relatively uncomplicated igneous texture. The silicate portion consists of subhedral to

euhedral olivine (Fo75), subhedral pyroxene laths (Wo2En7sFs2o), some of which poikilitically

enclose olivine chadacrysts, and an interstitial feldspathic mesostasis (CIPW normative
composition of 48% quartz, 38% felspar, 11% corundum, 1% hypersthene, 1% ilmenite, and 1%

apatite.). A few pyroxene laths have,thin (calcic?) rims. One bronzite overgrowth was seen

surrounding a partially resorbed relic! pyroxene grain; both have similar major element

compositions, although the overgrowth contains more Cr20 3 (0.95 vs. 0.11 wt.%) and less TiO 2

(0.04 vs. 0.19 wt.%). The melt assemblage is very fine-grained, typically <50 I_m in size, although

olivine sometimes nucleated or aggregated into submillimeter-sized polycrystalline clots, producing
a fine-grained glomeroporphyritic texture.

The opaque portion of the melt is dominated by Fe,Ni-metal and sulfides, although it also

includes chromite (Mg/(Mg+Fe) = 0.18, Cr/(Cr+AI) = 0.86). Some of the metal and sulfide

occur in large millimeter- to centimeter-sized distended particles which produce a sense of flow in

hand-specimens. Metal-sulfide assemblages are often associated with vesicles, suggesting that

sulfur was being volatilized or, alternatively, that the gas vesicles, trapped in a rapidly solidifying
silicate melt, associated themselves with more plastic metal-sulfide assemblages. The metal is

dominantly martensite (8.8 to 19.3 wt.% Ni) and occurs in ellipsoidal orbs that are embedded in

troilite. Thin rims of kamacite (7.1 wt.% Ni), associated with small phosphide patches (probably
schreibersite), have crystallized at the interface between the martensite and troilite. Occasional

skeletal laths have also crystallized inside the martensitic orbs. Troilite, in addition to being

associated with the orbicular metal assemblages, is finely-disseminated in some areas of the melt.

Because the melt fraction of Cat Mountain appears to be total melt and mixed with shock-

metamorphosed clasts, it was probably produced by impact processes and is not a plutonic

intrusion of melt into a chondritic crust or a volcanic extrusion with crustal xenoliths. To produce
the partial and total melts in Cat Mountain, the impact event must have been sufficiently

energetic to produce peak temperatures in excess of 1000 °C. As indicated by the vesicles in the

melt matrix, these temperatures allowed the breccia to begin degassing. The hot melt was rapidly

cooled against the relatively cold elastic material, producing zones of cryptocrystalline (and

sometimes isotropic) assemblage of silicates and metal-sulfide droplets around the margins of the

clasts. The cooling induced by the rapid thermal equilibration of the clasts and melt, as well as

conduction to the melt breccia's surroundings, also quenched the cores in metal-sulfide

assemblages to martensite, producing a texture similar to that in Ramsdorf, Rose City, and

Orvinio [3,4,5]. However, since the metal orbs in Cat Mountain, like those in Rose City, also

have kamacite rims, Cat Mountain probably cooled at a slower rate than Ramsdorf and Orvinio

[5], and most likely represents a melt breccia lens or melt dike that was partially insulated by the

overburden of fragmental and fallback breccias inside or near the rim of an impact crater.
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